a2 United States Patent

Hoshino

US009473564B2

US 9,473,564 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)
(73)
")

@

(22)

(65)

(30)

Aug. 9, 2013

(1)

(52)

(58)

INFORMATION PROCESSING SYSTEM,
INFORMATION PROCESSING METHOD,
AND NON-TRANSITORY COMPUTER
READABLE MEDIUM FOR SPECIFYING
INSTALLED SOFTWARE APPLICATION

Applicant: Fuji Xerox Co., Ltd., Minato-ku,
Tokyo (JP)

Inventor: Takashi Hoshino, Kanagawa (IP)

Assignee: FUJI XEROX CO., LTD., Tokyo (IP)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 234 days.

Notice:

Appl. No.: 14/220,762

Filed: Mar. 20, 2014

Prior Publication Data

US 2015/0046561 Al Feb. 12, 2015
Foreign Application Priority Data
(P) e 2013-165860

Int. CI.
GOGF 15/16
HO4L 29/08
HO4L 29/06
GOGF 9/445
HO4L 12/24
U.S. CL
CPC oo HO4L 67/10 (2013.01); GOGF 8/60
(2013.01); HO4L 69/22 (2013.01); HOAL
41/0213 (2013.01)

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

Field of Classification Search
CPC HO4L 67/10; HO4L 69/22; HO4L 41/0213
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,583,722 B1* 112013 Gibson GO6F 11/2294
702/119
9,143,889 B2* 9/2015 Liuccovvevrvnnn. HO4W 12/04
2004/0117481 Al 6/2004 Arimoto et al.
2004/0193896 Al 9/2004 Kaneko
2006/0288056 Al 12/2006 Yamakawa et al.
2009/0247136 Al 10/2009 Srinivasan et al.
2011/0099273 Al 4/2011 Ide et al.
2012/0042049 Al 2/2012 Miyazaki et al.
2013/0011025 Al1* 12013 Liu .o HO4W 12/04
382/118

FOREIGN PATENT DOCUMENTS

Jp 1999032078 A 2/1999
Jp 2003196099 A 7/2003
Jp 2004-135228 A 4/2004
Jp 2004-246880 A 9/2004
Jp 2004-302656 A 10/2004
(Continued)

OTHER PUBLICATIONS

Office Action issued by Japanese Patent Office in corresponding
Japanese Patent Application No. 2013165860, dated Mar. 18, 2014.

Primary Examiner — Moustafa M Meky
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

An information processing system includes a packet receiv-
ing unit, a registration unit, and a software specification unit.
The packet receiving unit receives a packet flowing in a
communication network. The registration unit registers one
or more devices connected to the communication network.
The software specification unit specifies a software appli-
cation installed in a registered device among the one or more
registered devices, on the basis of information regarding a
file contained in the packet, the packet being transmitted or
received by the registered device.

3 Claims, 18 Drawing Sheets

300
310
301
1-312
N PACKET RECEIVING || e T ORICAL INFORMATION],
MEMORY
303 313
[SOFTWARE SOFTWARE-INFORMATION|/
SPECIFICATION MEMORY
UNIT 314
TARGET-DEVICELIST
MEMORY

US 9,473,564 B2

Page 2
(56) References Cited Jp 2007-279835 A 10/2007
Jp 2008234544 A 10/2008
Jp 2009-238065 A 10/2009
FOREIGN PATENT DOCUMENTS Jp 2011-090512 A 5/2011
Jp 2012-038213 A 2/2012
Jp 2006350829 A 12/2006 Jp 2012-208679 A 10/2012
Jp 2007-019981 A 1/2007
Jp 2007-272717 A 10/2007 * cited by examiner

U.S. Patent

201

202

Oct. 18, 2016 Sheet 1 of 18 US 9,473,564 B2

FIG. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 18 US 9,473,564 B2

FIG. 2
300
310
/
301~ ~ 319
N PACKET RECEVING | | s TORICALINFORMATION] /|
VEMORY
N SOFTWARE SOFTWARE-INFORMATION L
SPECIFICATION MEMORY
UNIT 314
TARGET-DEVICELLIST
MEMORY

U.S. Patent Oct. 18, 2016 Sheet 3 of 18 US 9,473,564 B2

FIG. 3
$100
START OF SOFTWARE
SPECIFICATION PROCESS)
5101
Y
RECEIVE PACKET] 5103
5102 "~
S, | (TR
HAS TRANSMISSION-
SOURCE DEVICE OR TARGET DEVICE? NO
TRANSMISSION-DESTINATION /NO YES 3104
DEVICE BEEN REGISTERED? /
Bl REGISTER T IN
< TARGET-DEVICE -LIST MEMORY
PACKET ANALYSIS PROCESS 5200
I 5700
ANALYSIS PROCESS USING
HISTORICAL INFORMATION
5705
Y
SAVE NECESSARY INFORMATION

\
END OF SOFTWARE
(SPECIFICATION PROCESS

U.S. Patent Oct. 18, 2016 Sheet 4 of 18 US 9,473,564 B2

FIG. 4

5200

< START OF PACKET
ANALYSIS PROCESS

§20‘|
ANALYZE PACKET SAVED

THIS TIME $300
v s702 L S400
o~ ~
ANALYSIS-TARGET ~ \/ES —L__POP $500
—>{ SMIP F—————>

PROTOCOL?

NO ANOTHER |~5203
> TARGET >
PROTOCOLS

5204 \ $205
< SOFTWARE-SPECIFIC ASSUME THAT SOFTWARE

APPLICATION USING

PROTOCOL? YES | SOFTWARE-SPECIFIC

0 PROTOCOL HAS BEEN
INSTALLED

<
<

\
STORE ANALYSIS
INFORMATION IN 506
SOFTWARE-INFORMATION
MEMORY

-

END OF PACKET
C ANALYSIS PROCESS

US 9,473,564 B2

Sheet 5 of 18

Oct. 18, 2016

U.S. Patent

m 953008 dLIH40 ON3 u
A

AJOWIN NOILYIWHOINI-FHYMLIOS NI

LCES™1 " NOILYWHOANI SISATANY FHOLS
A : } |
¥3AH3S SV @33N ¥IAYIS SY 43SN IERNT
30IA30 SY IDIA30 301A30 S¥ 30IA3a NOILISINDOV NI G3ANTONI
1399¥L INNSSY 1394¥1 INNSSY SIINTIHLHO o%e 4
— A PG | NOILYDI1ddY 34vMLI0S
61€S 91€S 40 NOILYTIVLSNI INNSSY
QITIVLSNI 7169 A
N339 SYH 3114 10 ONISN e E S TN NOILYNIISIa WOE4
40 318¥dvD NOILYDIddY WOY3 NOILYWHOANI INTIHLHO AISN S ¥30v3H 1usby-1esn WOYA
Fa¥MLA0S LYHL INNSSY FUYML40S-4FA3S NOILYITddY FEVMIA0S | | NOILYWHOANI Y3SMOUS
L 371470 S 343HL 4] LoziS%mﬁ HOIHM JNNSSY aNY SO INNSSY
02€S 81€S G1ES €1es
¢13MOVd 4 13%0vd
F0IA30 1394y \ d0NOILOFMIA / 3DIA3Q 13DuvL 30IA30 (399vL\ JONOILIZAT / 301A30 13941
A8 3N A NOM4 G3LLNSNYYL A9 Q3N . WOY4 G LLINSNYHL
L1€S AR
/oomnoesn \
INOdSTY\ ¢1ST0OR /Isann
LLES A
A ﬁ $33004d dLLH 40 L¥vLS v
00€S

G Ol

U.S. Patent Oct. 18, 2016 Sheet 6 of 18 US 9,473,564 B2

FIG. 6

GET /webhp?hl=ja HTTP/1.1
Host: www.google.co.jp
User-Agent: Mozilla/5.0 (Windows NT 5.1; rv:19.0) Gecko/20100101 Firefox/19.0

FIG. 7

()

MAC 1P |PRODUCT DEVICE| INSTALLED
D ApDRESS |VENPOR|ADDRESS| NAME 0s TYPE |APPLICATION

1 [001E4FF4D3XX| A 10.0.0.1 Windows XP| PC? FireFox19

U.S. Patent Oct. 18, 2016 Sheet 7 of 18 US 9,473,564 B2

FIG. 8

GET fiaction/adoapn_AppNexusDemoActionTag_1 HTTP/1.1

Host: view.atdmt.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; ja; rv:1.9.0.18) Gecko/2010021718
Cent0S/3.0.18-1.¢l5.centos Firefox/3.0.18

FIG. 9

ID|MAC ADDRESS|VENDOR| appikess | e | 05 [Pact| RETALED

TYPE [APPLICATION
1 [001E4FFAD3XX| A 10.0.0.1 Windows XP | PC? FireFox19
VIRTUAL MACHINE?

Cent0S FireF0x3.0.18

US 9,473,564 B2

Sheet 8 of 18

Oct. 18, 2016

U.S. Patent

810'€x0uy:

NOILYIddY 0001
SOWROSO | dilH | ep59,86 £000l 0001 | XXEQr44v3100 | b |€102Z 10
§1X04all4.

NOILYOIddY _—

dX SMOPUMISO| dLLH | 0 /96yEzl 000 000 | XXEQv44v3100 | 1 | 2LOC/OMLO

1Ovd 20 SISATYNY

NOLLYINHOSNI 13M9Vd 40 SSTHAQY dI INIL
aINDOY | 1000L08d] | Ss3dQ0V | FONOSNOISSINSNVAL | o ANaNG ;| 9538V OV Al any 31w

0l 9Id

U.S. Patent Oct. 18, 2016

Sheet 9 of 18

US 9,473,564 B2

FIG. 11
MAC 1P [PRODUCT DEVICE[INSTALLED
ID| ApDRESs |VENDOR|appRess| NAME | ©S | TYPE | APPLICATION
1]001EAFFAD3XX] A | 10.0.0.1 CentOS| PC? | FireFox3.0.18

FIG. 12

GET / pub/ exe/docuworks/ dwvlt732jpn.exe HTTP/ 1.1
Host: download . xxxxxxxxx.co.jp
User-Agent; Mozilla/ 5.0 (Windows NT 6.1; rv:21.0) Gecko/ 20100101 Firefox/21.0

FIG. 13

Host: view.atdmt

.com

GET/..Jpukiwikiphp HTTP/.1

User-Agent: Mozilla/5.0 (X11; U; Linux i686; ja; rv:1.9.0.18) Gecko/2010021718
Cent0S/3.0.18 -1.el5.centos Firefox/3.0.18

U.S. Patent

Oct. 18, 2016

Sheet 10 of 18

FIG. 14

US 9,473,564 B2

HTTP/1.1 200 OK
Date: Mon, 01 Jul 2013 11.55:08 GMT
Server: Apache

FIG. 15
MAC IP |PRODUCT DEVICE | INSTALLED
IOl apprEss |VENDOR AppRess| NAME | ©S | TYPE | APPLICATION
1botearxoood A [10.0.0.100 SERVER?| PukiWiki

U.S. Patent Oct. 18, 2016 Sheet 11 of 18 US 9,473,564 B2

FIG. 16
S400
(START OF POP PROCESS)
S411

RECEPTION REQUEST TARGET DEVICE RECEIVES
FROM TARGET DEVICE DIRECTION OF RECEPTION REQUEST

PACKET?

5412 S414

A4 v =

ASSUME ADDRESS OF TARGET| | ASSUME TARGET DEVICE AS
DEVICE FROM To HEADER OF
RECEIVED E-MAIL DEVICE USED AS SERVER

5413
22

IF THERE IS ATTACHED FILE,
ASSUME THAT SOFTWARE
APPLICATION CAPABLE OF

USING ATTACHED FILE
HAS BEEN INSTALLED

vy vy

STORE ANALYSIS INFORMATION | _g415
IN SOFTWARE-INFORMATION MEMORY

(END OF POP PROCESS)

U.S. Patent Oct. 18, 2016 Sheet 12 of 18 US 9,473,564 B2

FIG. 17

5500

CSTART OF SMTP PROCES@

8511
TRANSMISSION REQ ICESTi Y < TARGET DEVICE RECEIVES

FROM TARGET DEV DIRECTION OF \TRANSMISSION REQUEST
PACKET?

v S512 v §§15
ASSUME ADDRESS OF TARGET ASSUME TARGET DEVICE
DEVICE FROM CONTENT OF AS DEVICE USED AS

MAIL FROM COMMAND MAIL SERVER

551
22

w

\

ASSUME OS AND
MAILER INFORMATION
FROM User-Agent HEADER

Y §‘5’14

IF THERE IS ATTACHED FILE,
ASSUME THAT SOFTWARE
APPLICATION CAPABLE OF

USING ATTACHED FILE
HAS BEEN INSTALLED

Y v

STORE ANALYSIS INFORMATION _ |_as15
IN SOFTWARE-INFORMATION MEMORY

CEND OF SMTP PROCESS)

U.S. Patent Oct. 18, 2016 Sheet 13 of 18 US 9,473,564 B2

FIG. 18

EHLO[10.0.0.1]

HELO [10.0.0.1]

MAIL FROM:<yyy@xxx..xxx.com>

RCPT TO:<zzz@xxx.xxx.com>

DATA

Message-1D; <51D171C1.70509 @xxx.xxx.com>

Data: Mon, 01 Jul 2013 21:10:41 +0900

From: <yyy@xxx..xxx.com>

User-Agent:Mozilla/5.0(Windows NT 6.1; rv:17.0) Gecko/20130620 Thunderbird/17.0.7
MIME-Version: 1.0

To: zzz@xxx.xxx.com

Subject: =?1502022 -JP?B?GyRCJSQlcyU5JU ghPCVrGyhC?=
Content-Type: multipart/ mixed,;

boundary="-----------—- 070907060801030301040803"

This is a multi-part message in MINE format.
—————————————— 070907060801030301040803
Content-Type: text/plain;charset=1S0-2022-JP
Content-Transfer-Encoding: 7bit

—————————————— 070907060801030301040803
Content-Type: application/ octet-stream;
name="dwvlt732jpn.exe”
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="dwvlt732jpn.exe’

US 9,473,564 B2

Sheet 14 of 18

Oct. 18, 2016

U.S. Patent

NOILYWHOANI TYOIHOLSIH ONIS
m 5S3004d SISATYNY 40 ONS

AJONIN
NOILYWHOANI-34¥ML40S NI
NOILYWHOANI SISATYNY F4OLS

8075 A

(3TIVLSNI N33 SYH
NOILYOITddY JHYM1409
INFOV JINS IvHL INNSSY

v0.S

~
>

\
QITVISNI S 3/as
30HN0S-NOISSINSNYAL
HLIM G31YI00SSY
AT5010 NOILYOTddY
JUVALA0S IVHL JNNSSY ON
A ZAONINDIEA LNVLSNOD
2043 / HLIV NOILYNLLS30 G3X/4
m>/9zo_mm_%zéz_oo_%a
51000109d 907S
1399v1
60.,5—~__3HIONY ON
<G7as—L__ o8 £1000104d LIONYL-SISATYNY
0185~ 2073 y
NS
£0.5— NOLLYINGOAN]
TWOIOLSIH FZATYNY
1028 !

A

0023
61 Ol

NOILYWHOANI TYOIHOLSIH ONISII
353004d SISATYNY 40 LHVLS

U.S. Patent Oct. 18, 2016

Sheet 15 of 18

FIG. 20

PROCESS

(START OF POP+SMTP

\

S831
/ -~

< DIRECTION? >

TRANSMISSION FROM
TARGET DEVICE

\

5832
/ ~

IS FILE THAT HAS BEEN
RECEIVED IN PAST EDITED
AND TRANSMITTED?

YES

\

5833
/ ~

IF THERE IS ATTACHED FILE,
ASSUME THAT SOFTWARE
APPLICATION CAPABLE OF

USING ATTACHED

FILE HAS BEEN INSTALLED

\

5834
/ -~

STORE ANALYSIS
INFORMATION IN
SOFTWARE-INFORMATION
MEMORY

Y
END OF POP-SMTP
(PROCESS)

US 9,473,564 B2

US 9,473,564 B2

Sheet 16 of 18

Oct. 18, 2016

U.S. Patent

WE=IY 80816E969.G
SOMNO0Q PAP /91685 00:01
V207al | dws | pioceoqzy | mpeeee | oeapd4v3100 02 XX8604926200 17 eL02ZU10

0

(¥oLIa3) 5999900
SYJOMN20Q 8901581119 er-Ll
07ar | dws | 2092009180 | MprEee | XX860492£700 12 XXEar443400 0 £102/02/10
NOLLYWHOINI 440 | FwwnTnd | DSV | g o pvizsaa | SSTUAYYN | qr30unos =
a3uIN0dY | "OIOLO8 | A S | GEHOVLLY | \\SEINESIC | NOISSINSNVEL |y o3k, | NOISSTASNWRIL | - aNv3Lva

LZ Old

U.S. Patent

Oct. 18, 2016

Sheet 17 of 18

US 9,473,564 B2

FIG. 22
P [PRODUCT| ~e |DEVICE INSTALLED
ID| MAC ADDRESS |VENDOR | appress | NAME | O° | TvPE APPLICATION
20 |001E4FFADAK | A [100.0.401 PC? |Doculhiorks (VIEWER, EDITOR)
21 [002326FCo0 | B [100.0.102 PC? | Docuorks (IEWER)

U.S. Patent Oct. 18, 2016 Sheet 18 of 18 US 9,473,564 B2

201

202

_—600
620

US 9,473,564 B2

1
INFORMATION PROCESSING SYSTEM,
INFORMATION PROCESSING METHOD,
AND NON-TRANSITORY COMPUTER
READABLE MEDIUM FOR SPECIFYING
INSTALLED SOFTWARE APPLICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is based on and claims priority under 35
USC 119 from Japanese Patent Application No. 2013-
165860 filed Aug. 9, 2013.

BACKGROUND

(1) Technical Field

The present invention relates to an information processing
system, an information processing method, and a non-
transitory computer readable medium.

(ii) Related Art

Use of information communication terminals via a net-
work such as the Internet has become popular, the informa-
tion communication terminals transmitting and receiving
information. In a network used in an office or the like, it is
effective to know, in advance, information on devices con-
nected to the network for detecting malfunction of devices
connected to the network, addressing troubles of the net-
work, improving the throughput of the network, and the like.

In recent years, various devices have become capable of
being connected to a network, and devices in which an
information collection agent program is unable to be
installed are connected to the network in many cases. In
addition, the same type of devices connected to a network
may often use the network differently depending on software
applications installed therein after purchase. Thus, it is
difficult to determine the latest information on devices
connected to a network.

SUMMARY

According to an aspect of the invention, there is provided
an information processing system including a packet receiv-
ing unit, a registration unit, and a software specification unit.
The packet receiving unit receives a packet flowing in a
communication network. The registration unit registers one
or more devices connected to the communication network.
The software specification unit specifies a software appli-
cation installed in a registered device among the one or more
registered devices, on the basis of information regarding a
file contained in the packet, the packet being transmitted or
received by the registered device.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present invention will be
described in detail based on the following figures, wherein:

FIG. 1 is a diagram illustrating a communication network
according to an exemplary embodiment of the invention;

FIG. 2 is a schematic block diagram illustrating the
configuration of an information processing apparatus of
FIG. 1,

FIG. 3 is a flowchart illustrating a software specification
process in the information processing apparatus of FIG. 2;

FIG. 4 is a flowchart illustrating a packet analysis process;

FIG. 5 is a flowchart illustrating an HTTP process;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 is a diagram illustrating a portion of a header of a
communication message transmitted from a target device via
HTTP;

FIG. 7 is a diagram illustrating an example of information
saved in a software-information memory on the basis of the
information illustrated in FIG. 6;

FIG. 8 is a diagram illustrating a portion of a header of a
communication message transmitted from a target device via
HTTP;

FIG. 9 is a diagram illustrating an example of information
saved in the software-information memory on the basis of
FIGS. 6 and 8;

FIG. 10 is a diagram illustrating information on commu-
nication messages transmitted from a single connected
device at different times, the communication messages being
recorded in a historical-information memory;

FIG. 11 is a diagram illustrating an example of informa-
tion saved in the software-information memory on the basis
of the information illustrated in FIG. 10;

FIG. 12 is a diagram illustrating a portion of a header of
a communication message transmitted from a target device
via HTTP;

FIG. 13 is a diagram illustrating a portion of a header of
a communication message received by a target device via
HTTP;

FIG. 14 is a diagram illustrating an example of a message
transmitted by an HTTP server;

FIG. 15 is a diagram illustrating an example of informa-
tion saved in the software information memory on the basis
of the information illustrated in FIG. 13;

FIG. 16 is a flowchart illustrating an example of a POP
process;

FIG. 17 is a flowchart illustrating an example of a SMTP
process;

FIG. 18 is a diagram illustrating an example of an SMTP
message;

FIG. 19 is a flowchart illustrating an analysis process
using historical information;

FIG. 20 is a flowchart illustrating the POP process and the
SMTP process;

FIG. 21 is a diagram illustrating information on commu-
nication messages with which files having the same name
have been transmitted and received at different times, the
communication messages being recorded in the historical-
information memory;

FIG. 22 is a diagram illustrating an example of informa-
tion saved in the software-information memory on the basis
of the information illustrated in FIG. 21; and

FIG. 23 is a diagram illustrating communication network
according to another exemplary embodiment of the inven-
tion.

DETAILED DESCRIPTION

FIG. 1 is a diagram illustrating a communication network
100 according to an exemplary embodiment of the inven-
tion. As illustrated in FIG. 1, the communication network
100 includes an internetwork 110 such as the Internet, an
intranet 120 such as a network inside an office, and a
gateway 130 that connects the intranet 120 with the inter-
network 110. Here, in the intranet 120, information termi-
nals 201 and 202, a server apparatus 205, and an information
processing apparatus 300, which is an information process-
ing system, are connected to each other via communication
using communication cables or via wireless communication
such that electrical communication is possible.

US 9,473,564 B2

3

The information terminals 201 and 202 perform process-
ing mainly on information saved therein, information
acquired from the server apparatus 205 via the intranet 120,
or information acquired from the internetwork 110. The
server apparatus 205 supplies information requested mainly
by the information terminals 201 and 202; however, the
server apparatus 205 may be connected to the internetwork
110 and may have a function for acquiring information to be
supplied to the information terminals 201 and 202 or the
like.

Devices connected to the intranet 120 (hereinafter also
referred to as connected devices) each have a unique address
constituted by digital data such as an Internet Protocol (IP)
address or the like. In the case where information is trans-
mitted, the information is transmitted to the intranet 120 by
specifying a transmission-destination address. In this case,
since the intranet 120 according to the exemplary embodi-
ment does not include a relay apparatus having a function for
directing information to a transmission destination on the
basis of an address of a switch, a switching hub, or the like,
all the devices connected to the intranet 120 receive all the
information transmitted to the intranet 120. Each of the
devices connected to the intranet 120 checks whether the
address of received information is the address of the device,
and acquires the content of packets only when the address of
the received information is the address of the device. When
the address of the received information is not the address of
the device, the received information is discarded. In the
communication network 100, information has been divided
into groups (packets) at a transmission source in advance
and the packets are sequentially transmitted, the packets
each having an amount of information smaller than or equal
to a predetermined amount of information. The packets are
incorporated and the information obtained before division is
reconstructed at a transmission destination.

FIG. 2 is a schematic block diagram illustrating the
configuration of the information processing apparatus 300.
As illustrated in FIG. 2, the information processing appa-
ratus 300 includes a packet receiving unit 301 that receives
packets flowing through the intranet 120, a software speci-
fication unit 303 that specifies an installed software appli-
cation from information included in one or more packets,
and a memory 310 that includes a magnetic disk device or
the like.

Here, the memory 310 includes a historical-information
memory 312 that stores communication histories using
packets, a software-information memory 313 that stores
information on an operating system (OS) and other software
applications of a connected device specified by the software
specification unit 303 by associating the information with
identification information of the connected device, and a
target-device-list memory 314 that stores the MAC address
of'a connected device for which a software application is to
be specified (hereinafter referred to as a “target device”).

Here, devices connected to the intranet 120 such as the
information processing apparatus 300, the information ter-
minals 201 and 202, and the server apparatus 205 each
include a central processing unit (CPU), a random-access
memory (RAM), a magnetic disk device, and the like. The
devices are devices used to process digital information under
control performed by a software application stored in a
memory such as a magnetic disk device or the like.

FIG. 3 is a flowchart illustrating a software specification
process S100 in the information processing apparatus 300.
As illustrated in this flowchart, in the software specification
process S100, packets of communication using the intranet
120 are first received (S101). Next, it is checked whether or

10

30

35

40

45

55

4

not a transmission source or a transmission destination is a
registered device (S102). Whether or not a certain device has
been registered is determined by whether or not the MAC
address of the certain device has been saved in the target-
device-list memory 314. When the transmission source or
the transmission destination is not registered, it is checked
whether or not the transmission source or the transmission
destination needs to be registered as a target for which
information is to be acquired (S103). When the transmission
source or the transmission destination does not need to be
registered, either, the software specification process S100
ends. In contrast, when the transmission source or the
transmission destination needs to be registered, the trans-
mission source or the transmission destination is registered
in the target-device-list memory 314 (S104). Whether or not
a certain device needs to be registered may be determined by
whether or not the certain device has a MAC address to
which an IP address used in a target subnet has been
assigned. Thereafter, in the case where the transmission
source or the transmission destination is a registered device
in step S102 and in the case where the transmission source
or the transmission destination is registered in the target-
device-list memory 314 in step S104, a packet analysis
process S200 and an analysis process S700 using historical
information are performed. In the end, necessary informa-
tion is saved and then the software specification process
S100 ends.

In the following, the packet analysis process S200 and the
analysis process S700 using historical information of FIG. 3
will be described. Note that each of Google (registered
trademark), Mozilla (registered trademark), Windows NT
(registered trademark), Windows XP (registered trademark),
Windows (registered trademark) 7, Firefox (registered trade-
mark) 19, Firefox (registered trademark) 21, Linux (regis-
tered trademark), THUNDERBIRD (registered trademark),
Docuworks (trademark), Docuworks Viewer Lite (trade-
mark), and Gecko (trademark) used in the following descrip-
tion and attached drawings is a registered trademark or a
trademark.

FIG. 4 is a flowchart illustrating the packet analysis
process S200. As illustrated in this flowchart, packets saved
this time are first analyzed (S201). Next, it is determined
whether or not a protocol for the packets is an analysis-target
protocol on the basis of the analysis result (S202). When the
protocol for the packets is Hypertext Transfer Protocol
(HTTP), the procedure proceeds to an HTTP process (S300).
When the protocol for the packets is Post Office Protocol
(POP), the procedure proceeds to a POP process (S400).
When the protocol for the packets is Simple Mail Transfer
Protocol (SMTP), the procedure proceeds to an SMTP
process (S500). When the protocol for the packets is another
analysis-target protocol, the procedure proceeds to a process
for the other analysis-target protocol (S203). Analysis infor-
mation obtained as a result of assumption is stored in the
software-information memory 313 (S206). Here, when the
protocol for the packets is not an analysis-target protocol, it
is determined whether or not the protocol for the packets is
a software-specific protocol (S204). When the protocol for
the packets is a software-specific protocol, it is assumed that
a software application using the software-specific protocol
has been installed (S205). Analysis information obtained as
a result of assumption is stored in the software-information
memory 313 (S206). In the case where the protocol for the
packets is not a software-specific protocol, either, and in the
case where the analysis information is stored, the packet
analysis process S200 ends.

US 9,473,564 B2

5

FIG. 5 is a flowchart illustrating the HTTP process S300
of FIG. 4. As illustrated in this flowchart, it is first deter-
mined whether or not an HTTP message is a request or a
response message (S311). When the HTTP message is a
request message, the direction of the packets is determined
(S312). In the case where the packets have been transmitted
from a target device, OS and browser information is
assumed from a User-Agent header (S313). For example, in
FIG. 6, a portion of a header of a communication message
transmitted from a target device via HTTP is illustrated.
“Windows XP (registered trademark)”, “PC?”, and “FireFox
(registered trademark) 19” are specified on the basis of
details described in a “User-Agent” tag illustrated in FIG. 6,
and, for example, information on underlined portions of
FIG. 7 is saved in the software-information memory 313.
Here, it has been registered in advance that an operating
system “Windows NT (registered trademark) 5.1” is gener-
ally referred to as “Windows XP (registered trademark)”.

Here, “PC?” refers to a case where there is a high
probability that the target device is used as a personal
computer and, in addition, there is a possibility that the
target device is used as a server apparatus. The reason why
such description is given is that “Windows XP (registered
trademark)” is generally used as an OS of a personal
computer but may also be used as an OS of a server
apparatus. Information including “?” is unconfirmed infor-
mation; however, even unconfirmed information may be
useful information to determine the entirety of the intranet
120 compared with the case where unconfirmed information
is not recorded at all. Thus, even unconfirmed information
including “?” is registered.

Note that basic information such as a MAC address and
an [P address that are not-underlined portions in FIG. 7 has
been acquired in advance in the exemplary embodiment.
Such information may be acquired via a protocol such as
Address Resolution Protocol (ARP), Simple Network Man-
agement Protocol (SNMP), Simple Service Discovery Pro-
tocol (SSDP), or Internet Control Message Protocol (ICMP).
In addition, when such information is acquired, connected
devices are listed up and a connected device determined to
have insufficient information may be determined to be a
target device for the software specification process S100.
Note that basic information on a connected device may be
acquired by a program executed periodically.

FIG. 8 is a diagram illustrating a portion of a header of
another communication message transmitted from the target
device via HTTP, the target device being the same as that of
FIG. 6. Here, detailed information on the OS shown in the
“User-Agent” tag is different from the information on the OS
that has been already recognized. Thus, it is conceivable that
an OS called “CentOS” and “Windows XP (registered
trademark)” are dual booted, “CentOS” is operating in a
virtual machine, or the OS of the target device has been
replaced. In accordance with such information, information
in the software-information memory 313 is updated as
illustrated in FIG. 9. In an example illustrated in FIG. 9, a
broken line is drawn in order to show that there is a
possibility that plural OSes have been installed. More
detailed information on an installed software application
may be acquired by analyzing such newly acquired infor-
mation.

Here, in the case where the OS of the target device has
been actually replaced, wrong information remains. Histori-
cal information as illustrated in FIG. 10 remains in the
historical-information memory 312. In the case where, a
predetermined period or longer is determined to have passed
by referring to this historical information since transmission

25

30

40

45

6

performed by the other OS, the information on the other OS
is deleted. For example, in the case of the historical infor-
mation of FIG. 10, the information on the other OS is old
since the information on the other OS is more than one year
old. Thus, the OS of the target device is determined to have
been replaced and, as illustrated in FIG. 11, information on
“Windows XP (registered trademark)”, the previous OS, and
applications is deleted. Here, information that is more than
one year old is treated as old information; however, a period
used to determine old information may be arbitrarily set.
Such a period may also differ from item to item. Processing
for deleting such old information may also be executed
when the software specification process is performed or may
be executed periodically. By using historical information in
this way, highly probable information may be acquired.

Referring back to FIG. 5, after completion of processing
for assuming the OS and browser information in step S313,
when an acquisition target URL includes an execution file
with an extension such as exe, it may be assumed that the
software application of the execution file is to be installed
(S314). For example, in the case where there is a message as
illustrated in FIG. 12, dwvlt732jpn.exe is an installer for
Docuworks Viewer Lite (trademark) and thus it may be
assumed that this software application is to be installed. In
addition, it is also clear on the basis of the message of FIG.
12 that a browser is Firefox (registered trademark) 21 and an
OS is Windows (registered trademark) 7.

Referring back to FIG. 5, when the HT'TP message is a
request message to be received by the target device, which
software application is used or the like is assumed from a
destination URL (S315). Furthermore, it may be assumed
that the target device is a device used as a server (S316). For
example, FIG. 13 illustrates a portion of a header of a
communication message to be received by a target device
via HTTP. The target device that has received an HTTP
request message may operate as an HTTP server. In particu-
lar, when the target device returns an HTTP response mes-
sage as illustrated in FIG. 14 after receiving the HTTP
request message, it may be determined that the target device
is operating as an HTTP server. It may be determined from
the historical information recorded in the historical-infor-
mation memory 312 that the target device is used as an
HTTP server if various devices have accessed the target
device. In this communication message illustrated in FIG.
13, furthermore, when a path of a GET target is checked by
referring to information stored in advance and extraction
data matches the information stored in advance in terms of
apath called “pukiwiki.php”, it is determined that a software
application called PukiWiki has been installed. Information
as illustrated in FIG. 15 based on this communication
message is saved in the software-information memory 313.

Referring back to FIG. 5, when the HT'TP message is a
response message, the direction of packets is determined
(S317). When transmission is performed from a target
device, OS and server-software information is assumed from
a Server header (S318). From details illustrated in FIG. 14,
information indicating that Apache (the name of an HTTP
server) is used may be acquired. From information obtained
as a result of assumption, it may be assumed that the target
device is used as a server, in this case, as an HTTP server
(S319). In addition, when reception is performed by the
target device, in particular, in the case where there is a
download file or the like, it may be assumed that the
software application capable of using the download file or
the like has been installed (S320). By performing the above-

US 9,473,564 B2

7

described process, analysis information obtained as a result
of'assumption is stored in the software-information memory
313 (S321).

FIG. 16 is a flowchart illustrating an example of a POP
process S400. As illustrated in this flowchart, the direction
of packets is first determined (S411). Here, when a reception
request is issued by a target device, the address of the
information processing apparatus 300 is assumed from a
“To” tag of a header of a received e-mail (S412). Thereafter,
when there is an attached file, it is assumed from the attached
file that a software application capable of using the attached
file has been installed (S413). In contrast, a reception request
is received by the target device, it is assumed that the target
device is a device used as a mail server (S414). Analysis
information obtained as a result of assumption is stored in
the software-information memory 313 (S415).

FIG. 17 is a flowchart illustrating an example of a SMTP
process S500. As illustrated in this flowchart, the direction
of packets is first determined (S511). Here, a transmission
request is issued by a target device, the address of the
information processing apparatus 300 is assumed from
details of a “MAIL FROM” command (S512). Next, OS and
mailer information is assumed from a “User-Agent” header
(S513). Thereafter, it is assumed from the attached file that
a software application capable of using the attached file has
been installed (S514). In contrast, when a transmission
request is received by the target device, it is assumed that the
target device is a device used as a mail server (S515).
Analysis information obtained as a result of assumption is
stored in the software-information memory 313 (S516).

FIG. 18 is a diagram illustrating an example of an SMTP
message. In FIG. 18, it is clear from the “User-Agent”
header that “Windows 7 (registered trademark)” and “Thun-
derbird (registered trademark) 17.0.7” have been installed.
In addition, since “dwvlt732jpn.exe” has been transmitted as
an attached file, it is assumed that “dwvlt732jpn.exe” is to be
installed at a reception device. Furthermore, it is clear that
the address of a transmission-source device is
“yyy@xxx.xxx.com”.

FIG. 19 is a flowchart illustrating the analysis process
S700 using historical information. As illustrated in this
flowchart, historical information is first analyzed (S701).
Next, it is determined whether or not the protocol for the
packets is an analysis-target protocol on the basis of an
analysis result (S702). When the protocol for the packets is
SNMP (S703), it is assumed that an SNMP agent software
application has been installed (S704). When the protocol for
the packets is POP, the procedure proceeds to a POP process
(S810). When the protocol for the packets is SMTP, the
procedure proceeds to an SMTP process (S820). When the
protocol for the packets is another analysis-target protocol,
the procedure proceeds to a process corresponding to the
other analysis-target protocol (S705). Here, when the pro-
tocol for the packets is not an analysis-target protocol
(8702), it is determined whether or not periodic transmission
is performed to a fixed destination with a constant frequency
(8706). When YES, it is assumed that a software application
closely associated with a transmission-source server has
been installed (S707). Thereafter, analysis information
obtained as a result of assumption is stored in the software-
information memory 313 (S708). In the case of NO and in
the case where the analysis information is stored, the analy-
sis process S700 ends.

FIG. 20 is a flowchart illustrating a POP-SMTP process
S800 corresponding to the POP process S810 and the SMTP
process S820 of FIG. 19. As illustrated in FIG. 20, the
direction of packets is first determined (S831). When trans-

5

10

20

25

30

35

40

45

50

55

60

65

8

mission is performed from a target device, it is determined
whether or not the target device has transmitted a file
obtained by editing a file received in the past (S832). When
YES, it is assumed that a software application capable of
using an attached file has been installed (S833), and analysis
information obtained as a result of assumption is stored in
the software-information memory 313 (S834). For example,
in the case where the extension of the file transmitted by the
target device and received by the information processing
apparatus 300 is “xdw”, this extension is used by a software
application called Docuworks (trademark). Thus, it may be
determined that it is very likely that a viewer for Docuworks
(trademark) has been installed in the target device. Further-
more, as illustrated in FIG. 21, the historical information
recorded in the historical-information memory 312 illus-
trates a case where a file called “aaa.xdw” is first transmitted
from a connected device having ID21 to a connected device
having ID20 and then transmitted from the connected device
having ID20 to the connected device having ID21 at a later
date. In this case, when the hash value of the file transmitted
from the connected device having ID21 to the connected
device having ID20 is different from that of the file trans-
mitted from the connected device having 1D20 to the con-
nected device having 1D21, it may be determined that it is
very likely that an editor for Docuworks (trademark) has
been installed in the connected device having D20 since it
is very likely that the file has been edited by the connected
device having D20, the hash values being recorded in the
historical information. As a result, information illustrated in
FIG. 22 may be saved in the software-information memory
313.

The extension is not particularly limited to “xdw”, and
various extensions may be used. In such a case, if a software
application or applications using a target extension are
limited, it may increase the accuracy of determination of an
installed software application or applications. In addition, in
the case where, in the historical information, a file used to
install a certain software application is received and then a
file having an extension used by the software application is
transmitted/received, it may be determined that the certain
software application has been installed.

In addition, an installed software application may be
specified by extracting a periodically transmitted commu-
nication message from the historical information recorded in
the historical-information memory 312. For example, it may
be determined that an SNMP manager software application
has been installed, by extracting a periodically transmitted
communication message containing SNMP packets. Fur-
thermore, by extracting a communication message accessing
an external server apparatus managing an antivirus software
application with a high frequency, it may be determined that
the antivirus software application has been installed, which
is an antivirus software application of a software company
having the external server apparatus. Furthermore, in the
case where communication is performed via a protocol
unique to a certain application, it may be determined that the
certain application has been installed in both of a transmis-
sion-source connected device and a transmission-destination
connected device.

Note that, in the exemplary embodiment, description has
been made such that the packet receiving unit 301 and the
software specification unit 303 of the information processing
apparatus 300 are incorporated in one apparatus, however,
may be configured as an information processing system in
which the packet receiving unit 301 and the software speci-
fication unit 303 are separately connected to a network.

US 9,473,564 B2

9

FIG. 23 is a diagram illustrating a communication net-
work 800 according to another exemplary embodiment of
the invention. In FIG. 23, components the same as those in
FIG. 1 are denoted by the same reference numerals and
redundant description will be omitted. A difference between
the communication network 800 and the communication
network 100 of FIG. 1 in the intranet 820 is that the
communication network 800 includes networks 610 and 620
that are separated from each other by a relay apparatus 600
such as a switch or a switching hub. In the case where
packets need to be transmitted to only one of the networks
610 and 620, the relay apparatus 600 prevents the packets
from being transmitted to the other one of the networks 610
and 620. In the case where packets need to be transmitted to
both the networks 610 and 620, the relay apparatus 600
transmits the packets to both the networks 610 and 620.
Thus, in the case where the information processing appara-
tus 300 is arranged in either of the networks 610 and 620,
there is a possibility that there are packets that the informa-
tion processing apparatus 300 is incapable of acquiring. The
relay apparatus 600 in this exemplary embodiment has a
function of the information processing apparatus 300 of
FIG. 1 and may acquire packets that are blocked between the
networks 610 and 620 and communication information.
Details of the software specification process S100 performed
in the relay apparatus 600 are similar to those performed in
the information processing apparatus 300, and thus descrip-
tion thereof will be omitted. With such a configuration, this
exemplary embodiment may have effects similar to those of
the communication network 100 of FIG. 1 according to the
exemplary embodiment.

Note that, in the case where there is a relay device such
as a switch or a switching hub, an information communi-
cation terminal that executes the software specification
process S100 is arranged as the relay apparatus in the
configuration of FIG. 23; however, plural information pro-
cessing apparatuses may also be arranged.

In addition, the software specification process is executed
when new connected-device information is acquired in the
above-described exemplary embodiments; however, timings
of execution of the software specification process may be
arbitrarily set. Examples of the timings include a timing at
which a user instructs and periodical timings.

In addition, in the above-described exemplary embodi-
ments, a program that executes a process may be stored in
an internal memory such as a magnetic disk device, and may
also be provided by being stored in a storage medium such
as a compact disc read-only memory (CD-ROM).

Furthermore, the configurations of the communication
networks 100 and 800 of the above-described exemplary
embodiments are mere exemplary embodiments of the
invention. Technical ideas and the minimum configuration
of an information processing system according to an exem-
plary embodiment of the invention are based on the claims.

The foregoing description of the exemplary embodiments
of the present invention has been provided for the purposes
of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations
will be apparent to practitioners skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical

20

30

40

45

10

applications, thereby enabling others skilled in the art to
understand the invention for various embodiments and with
the various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalents.

What is claimed is:

1. An information processing system comprising:

a packet receiving unit configured to receive a packet

flowing in a communication network;

a registration unit configured to register one or more

devices connected to the communication network; and

a software specification unit configured to specify a

software application installed in a registered device
among the one or more registered devices, on the basis
of information regarding a file contained in the packet,
the packet being transmitted or received by the regis-
tered device,

wherein the software specification unit is further config-

ured to specify the software application on the basis of
information indicating that content of a file that con-
tains information regarding a file contained in a packet
transmitted from the registered device has been
obtained by editing content of a file that contains
information regarding a file contained in a packet
received by the registered device.

2. An information processing method comprising:

receiving a packet flowing in a communication network;

registering one or more devices connected to the com-
munication network;

specifying a software application installed in a registered

device among the one or more registered devices, on
the basis of information regarding a file contained in
the packet, the packet being transmitted or received by
the registered device;

specifying a plurality of software applications installed in

the registered device; and

deleting information on a software application among the

plurality of software applications in a case where a
certain period has passed before installation of the
software application is confirmed.

3. A non-transitory computer readable medium storing a
program causing a computer to execute a process, the
process comprising:

receiving a packet flowing in a communication network;

registering one or more devices connected to the com-

munication network;

specifying a software application installed in a registered

device among the one or more registered devices, on
the basis of information regarding a file contained in
the packet, the packet being transmitted or received by
the registered device;

specifying a plurality software applications installed in

the registered device on the basis of content of a packet
that uses a type of communication protocol the same as
that used by the packet transmitted from the registered
device; and

deleting information on a software application among the

plurality of software applications in a case where the
software application has not performed transmission
via the type of communication protocol for a certain
period.

